Metabolic changes in colorectal carcinomas are key factors for the early detection of neoplastic change

Submitted: 21 February 2021
Accepted: 14 May 2021
Published: 5 July 2021
Abstract Views: 433
PDF: 150
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Potential metabolic biomarkers have been developed by the use of modern analytical techniques and nanotechnology in metabolomics, providing insight into the pathophysiological basis and changes, tumorigenesis, and molecular mechanisms that underpin better therapeutic, monitoring, and prognostic evaluations of colon malignancies. This would allow early detection and characterization of malignant colon tumors and could reduce the risk of mortality and morbidity of colorectal carcinomas. Based on their association with certain metabolic pathways linked to malignancies, a number of tumor markers have been designed. Whereas some have been associated with only one cancer type, while others are associated with many different forms of cancer. No tumor marker has been found to have universal application as a metabolism-related marker; although some are circulating tumor markers found in blood, urine, stool, or other body fluids, others may be found in the specific tumors themselves. This paper addresses a number of associated metabolic changes linked to colorectal cancers and potential applications for disease condition diagnosis, monitoring, treatment, and prognosis.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Ferlay J, Shin H-R, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer2010;127;2893–917. DOI: https://doi.org/10.1002/ijc.25516
DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv 2016;2:1-18. DOI: https://doi.org/10.1126/sciadv.1600200
Acker T, Plate KH. A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology. J Mol Med (Berl) 2002;80:562–75. DOI: https://doi.org/10.1007/s00109-002-0355-1
Cheng Y, Xie G, Chen T, et al. Distinct urinary metabolic profile of human colorectal cancer. J Proteome Res 2012;11:1354-63. DOI: https://doi.org/10.1021/pr201001a
Vander Heiden MG, DeBerardinis RJ. Understanding the Intersections between Metabolism and Cancer Biology. Cell 2017;168:657–69. DOI: https://doi.org/10.1016/j.cell.2016.12.039
Fang S, Fang X. Advances in glucose metabolism research in colorectal cancer. Biomed Rep 2016;5:289–95. DOI: https://doi.org/10.3892/br.2016.719
Granchi C, Bertini S, Macchia M, Minutolo F. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Curr Med Chem 2010;17:672-97. DOI: https://doi.org/10.2174/092986710790416263
Yu L, Chen X, Sun X, et al. The Glycolytic Switch in Tumors: How Many Players Are Involved? J Cancer 2017;8:3430–40. DOI: https://doi.org/10.7150/jca.21125
Muñoz-Pinedo C, Mjiyad NE, Ricci JE. Cancer metabolism: current perspectives and future directions. Cell Death Dis 2012;3:1-4. DOI: https://doi.org/10.1038/cddis.2011.123
Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 2015;17:351–9. DOI: https://doi.org/10.1038/ncb3124
Almuhaideb A, Papathanasiou N, Bomanji J. 18F-FDG PET/CT imaging in oncology. Ann Saudi Med 2011;31:3–13. DOI: https://doi.org/10.5144/0256-4947.2011.3
Piotto M, Moussallieh F, Dillmann B, et al. Metabolic characterization of primary human colorectal cancers using high resolution magic angle spinning 1H magnetic resonance spectroscopy. Metabolomics 2009;5:292. DOI: https://doi.org/10.1007/s11306-008-0151-1
Pavlova NN, Thompson CB. The Emerging hallmarks of cancer metabolism. Cell Metab 2016;23:27–47. DOI: https://doi.org/10.1016/j.cmet.2015.12.006
Armitage EG, Barbas C. Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal 2014;87:1–11. DOI: https://doi.org/10.1016/j.jpba.2013.08.041
Serkova NJ, Glunde K. Metabolomics of cancer. Methods MolBiol 2009;520:273–95. DOI: https://doi.org/10.1007/978-1-60327-811-9_20
Wishart DS, Feunang YD, Marcu A, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 2018;46:D608–D617. DOI: https://doi.org/10.1093/nar/gkx1089
Wishart DS, Mandal R, Stanislaus A, Ramirez-Gaona M. Cancer Metabolomics and the Human Metabolome Database. Metabolites 2016;6:23-34. DOI: https://doi.org/10.3390/metabo6010010
Markley JL, Bruschweiler R, Edison AS, et al. The future of NMR-based metabolomics. CurrOpinBiotechnol 2017;43:34–40. DOI: https://doi.org/10.1016/j.copbio.2016.08.001
Emwas AH. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods MolBiol 2015;1277:161–93. DOI: https://doi.org/10.1007/978-1-4939-2377-9_13
Pakiet A, Kobiela J, Stepnowski P, et al. Lipid: Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 2019;18:29. DOI: https://doi.org/10.1186/s12944-019-0977-8
Stephenson DJ, Hoeferlin LA, Chalfant CE. Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl Res 2017;189:13–29. DOI: https://doi.org/10.1016/j.trsl.2017.06.006
Hamilton SR, Rubio CA, Volgenstein B, et al. Carcinoma of the colon and rectum. In: Hamilton SR, Aaltonen LA, editors. World Health Organization classification of Tumours. Pathology and genetics of Tumours of the digestive system. Lyon: IARC Press; 2000: p. 105–120.
Strum WB. Colorectal adenomas. N Engl J Med 2016;374:1065–75. DOI: https://doi.org/10.1056/NEJMra1513581
Yamagishi H, Kuroda H, Imai Y, Hiraishi H. Molecular pathogenesis of sporadic colorectal cancers. Chin J Cancer 2016;35:4. DOI: https://doi.org/10.1186/s40880-015-0066-y
Grady WM. Genetic testing for high-risk colon cancer patients. Gastroenterol 2003;124:1574–94. DOI: https://doi.org/10.1016/S0016-5085(03)00376-7
Cappell MS. Pathophysiology, clinical presentation, and Management of Colon Cancer. GastroenterolClin N Am 2008;37:1–24. DOI: https://doi.org/10.1016/j.gtc.2007.12.002
Hornyák L, Dobos N, Koncz G, et al. The role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy. Front Immunol 2018;9:1-8. DOI: https://doi.org/10.3389/fimmu.2018.00151
Zhai L, Spranger S, Binder DC, et al. Molecular pathways: targeting IDO1 and Other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res 2015;21:5427–33. DOI: https://doi.org/10.1158/1078-0432.CCR-15-0420
Liou G-Y, Storz P. Reactive oxygen species in cancer. Free Radic Res 2010;44:1-31. DOI: https://doi.org/10.3109/10715761003667554
Liu Y, Hyde AS, Simpson M A, Barycki JJ. Emerging regulatory paradigms in glutathione metabolism. Adv Cancer Res 2014;122:69–101. DOI: https://doi.org/10.1016/B978-0-12-420117-0.00002-5
Iizuka K. The role of carbohydrate response element binding protein in intestinal and hepatic fructose metabolism. Nutrients 2017;9:1-12. DOI: https://doi.org/10.3390/nu9020181
Brown RE, Short SP, Williams CS. Colorectal cancer and metabolism. Curr Colorectal Cancer Rep 2018;14:226–41. DOI: https://doi.org/10.1007/s11888-018-0420-y
Araujo SEA, Alves PRA, Habr-Gama A. Role of colonoscopy in colorectal cancer. Rev HospClin 2001;56:23-36. DOI: https://doi.org/10.1590/S0041-87812001000100005
Niederreiter M, Niederreiter L, Schmiderer A, et al. Colorectal cancer screening and prevention –pros and cons. Mag Eur Med Oncol 2019;12:239-43. DOI: https://doi.org/10.1007/s12254-019-00520-z
Wen SH, Yang X. Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review. Cancer Manag Res 2018;10:199-206. DOI: https://doi.org/10.2147/CMAR.S153482
Vecchia S, Sebastián C. Seminars in cell & developmental biology metabolic pathways regulating colorectal cancer initiation and progression. Semin Cell DevBiol 2020;98:63-70. DOI: https://doi.org/10.1016/j.semcdb.2019.05.018
Hazwani MY, Sharaniza A, Suddin LS, et al. Metabolomics profiling on different stages of colorectal cancer: a systematic review. Malays J Med Sci 2018;25:16-34.
Mobasheri MB. Metabolomics in cancer. Basic Clin Cancer Res 2019;11:82-83. DOI: https://doi.org/10.18502/bccr.v11i2.1654
Miyanari N, Baba H. Cancer metabolism in gastrointestinal cancer. J Cancer Metastasis Treat 2015;1:172-82. DOI: https://doi.org/10.4103/2394-4722.165533
Qiu Y, Cai G, Zhou B, et al. A Distinct Metabolic Signature of Human Colorectal Cancer with Prognostic Potential. Clin Cancer Res 2014;20:2136-2146. DOI: https://doi.org/10.1158/1078-0432.CCR-13-1939
Zhang J, Guo S, Li J, et al. Effects of high-fat diet-induced adipokines and cytokines on colorectal cancer development. FEBS Open Bio 2019;9:2117-25. DOI: https://doi.org/10.1002/2211-5463.12751
Yusof HM, Abrahim S, Zurinah WAN, et al. Metabolites profile of colorectal cancer cells at different stages. Int J Appl Pharm 2019;11:21-5. DOI: https://doi.org/10.22159/ijap.2019.v11s1.T0051
Hagland HR, Jolma W. Molecular pathways and cellular metabolism in colorectal cancer. Dig Surg 2013;30:12-25. DOI: https://doi.org/10.1159/000347166
Gu J, Xiao Y, Shu D, et al. Metabolomics analysis in serum from patients with colorectal polyp and colorectal cancer by 1 H-NMR spectrometry. Dis Markers 2019:1-12. DOI: https://doi.org/10.1155/2019/3491852
Notarnicola M, Caruso MG, Tutino V, et al. Nutrition and lipidomic profile in colorectal cancers. Acta Biomed 2018;89:87-96.
Zhang H, Zhang A, Miao J, et al. Targeting regulation of tryptophan metabolism for colorectal cancer therapy: a systematic review. RSC ADV 2019;9:3072-80. DOI: https://doi.org/10.1039/C8RA08520J
Stewart HL. Geographic pathology of cancer of the colon and rectum. Cancer 1971;28:25–8. DOI: https://doi.org/10.1002/1097-0142(197107)28:1<25::AID-CNCR2820280106>3.0.CO;2-B
Świderska M, Choromańska B, Dąbrowska E, et al. The diagnostics of colorectal cancer. ContempOncol 2014;18:1–6. DOI: https://doi.org/10.5114/wo.2013.39995
Quentmeier A, Moller P, Schwarz V, et al. Carcinoembryonic antigen, CA 19.9, and CA 125 in normal and carcinomatous human colorectal tissue. Cancer 1987;60:2261–6. DOI: https://doi.org/10.1002/1097-0142(19871101)60:9<2261::AID-CNCR2820600926>3.0.CO;2-P
Koness RJ. CEA: is it of value in colorectal cancer? RI Med 1995;78:164–6.
Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37:1595–607 DOI: https://doi.org/10.2337/diabetes.37.12.1595
Laaksonen DE, Lakka HM, Niskanen LK, et al. Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am J Epidemiol 2002;156:1070–77. DOI: https://doi.org/10.1093/aje/kwf145
Furberg AS, Veierød MB, Wilsgaard T, et al. Serum high-density lipoprotein cholesterol, metabolic profile, and breast cancer risk. J Natl Cancer Inst 2004;96:1152–60. DOI: https://doi.org/10.1093/jnci/djh216
Michaud DS, Liu S, Giovannucci E, et al. Dietary sugar, glycemic load, and pancreatic cancer risk in a prospective study. J Natl Cancer Inst 2002;94:1293–300. DOI: https://doi.org/10.1093/jnci/94.17.1293
Park JS, Choi GS, Jang YS, et al. Influence of obesity on the serum carcinoembryonic antigen value in patients with colorectal cancer. Cancer Epidemiol Biomarkers Prev 2010;19:2461–8 DOI: https://doi.org/10.1158/1055-9965.EPI-10-0569
Herbeth B, Bagrel A. A study of factors influencing plasma CEA levels in an unselected population. OncodevBiol Med 1980;1:191-8.
Go VL.Carcinoembryonic antigen: clinical application. Cancer 1976;37:562-566 DOI: https://doi.org/10.1002/1097-0142(197601)37:1+<562::AID-CNCR2820370721>3.0.CO;2-0
StockleyRA, Shaw J, Whitfield AG, et al. Effect of cigarette smoking, pulmonary inflammation, and lung disease on concentrations of carcinoembryonic antigen in serum and secretions. Thorax 1986;41:17-24. DOI: https://doi.org/10.1136/thx.41.1.17
Chevinsky AH. CEA in tumors of other than colorectal origin. SeminSurgOncol1991;7:162-6. DOI: https://doi.org/10.1002/ssu.2980070309
Bormer OP. Standardization, specificity, and diagnostic sensitivity of four immunoassays for carcinoembryonic antigen. ClinChem1991;37:231-6. DOI: https://doi.org/10.1093/clinchem/37.2.231
Fletcher RH.Carcinoembryonic antigen. Ann Intern Med 1986;104:66-73. DOI: https://doi.org/10.7326/0003-4819-104-1-66
Reiter W, Stieber P, Reuter C, et al. Multivariate analysis of the prognostic value of CEA and CA19-9 serum levels in colorectall cancer. Anti Cancer Res 2000;20:5195–8.
Sato T, NishimuraG, NonomuraA, et al. Serological studies on CEA, CA 19-9, STn and SLX in colorectal cancer. Hepato-Gastroenterol1999;46:914–19.
Forones NM, M. Tanaka, CEA and CA 19-9 as prognostic indexes in colorectal cancer, Hepato-Gastroenterology, vol. 46, no. 26, pp. 905–908, 1999.
Liska V, HolubecLJr., TreskaV,et al. Dynamics of serum levels of tumour markers and prognosis of recurrence and survival after liver surgery for colorectal liver metastases, Anticancer Res2007;27:2861–4.
Webb P, Scott-Mackie L, Cunningham D, et al. The prognostic value of CEA, βHCG, AFP, CA125, CA19-9 and c-erb b-2, βHCG immunohistochemistry in advanced colorectal cancer. AnnOncol1995;6:581–7. DOI: https://doi.org/10.1093/oxfordjournals.annonc.a059248
Morita S, NomuraT, FukushimaY, et al. Does serum CA19-9 play a practical role in the management of patients with colorectal cancer? Dis Colon Rectum2004;47:227–32. DOI: https://doi.org/10.1007/s10350-003-0041-6
Gasser M, GerstlauerC, Grimm M,et al. Comparative analysis of predictive biomarkers for therapeuticalstrategies in colorectal cancer. AnnSurgical Oncol2007;14:1272–84. DOI: https://doi.org/10.1245/s10434-006-9155-0
Kawamura YJ, Tokumitsu A, Sasaki J, et al. Colorectal Carcinoma with Extremely Low CA19-9. Gastroenterol ResPract2009:780263. DOI: https://doi.org/10.1155/2009/780263
Lengauer C, Kinzler KW,Vogelstein B. Genetic instabilities in human cancers. Nature1998;396:643–9. DOI: https://doi.org/10.1038/25292
Grady WM, Pritchard CC. Molecular alterations and biomarkers in colorectal cancer. ToxicolPathol 2014;42:124–39. DOI: https://doi.org/10.1177/0192623313505155
Mäkelä JT, Laitinen ST,Kairaluoma MI. Five-year follow-up after radical surgery for colorectal cancer. Arch Surg1995;130:1062–7. DOI: https://doi.org/10.1001/archsurg.1995.01430100040009
Arveux I, Boutron MC, Arveux P, et al. Colon cancer in the elderly: evidence for major improvements in health care and survival. British J Cancer1997;76:963–7. DOI: https://doi.org/10.1038/bjc.1997.492
Obrand DI, Gordon PH. Incidence and patterns of recurrence following curative resection for colorectal carcinoma. Dis Colon Rectum 1997;40:15–24. DOI: https://doi.org/10.1007/BF02055676
Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med1988;319:525–32. DOI: https://doi.org/10.1056/NEJM198809013190901
Jones AM, Douglas EJ, Halford SE, et al. Array-CGH analysis of microsatellite-stable, near-diploid bowel cancers and comparison with other types of colorectal carcinoma. Oncogene2005;24:118–29. DOI: https://doi.org/10.1038/sj.onc.1208194
Cancer Genome Atlas Network, CGAN: Comprehensive molecular characterization of human colon and rectal cancer. Nature2012;487:330–7. DOI: https://doi.org/10.1038/nature11252
Ogino S, Nosho K, Irahara N, et al. Prognostic significance and molecular associations of 18q loss of heterozygosity: A cohort study of microsatellite stable colorectal cancers. J ClinOncol2009;27:4591–8. DOI: https://doi.org/10.1200/JCO.2009.22.8858
Sheffer M, Bacolod MD, Zuk O, et al. Association of survival and disease progression with chromosomal instability: A genomic exploration of colorectal cancer. ProcNatlAcadSci USA2009;106:7131–6. DOI: https://doi.org/10.1073/pnas.0902232106
Fearon ER, Cho KR, Nigro JM, et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 1990;247:49–56. DOI: https://doi.org/10.1126/science.2294591
Thiagalingam S, Lengauer C, Leach FS, et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nature Genet 1996;13:343–6. DOI: https://doi.org/10.1038/ng0796-343
Eppert K, Scherer SW, Ozcelik H, et al. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996;86:543–52. DOI: https://doi.org/10.1016/S0092-8674(00)80128-2
Zauber P, Sabbath-solitare M, Marotta SP and Bishop T: Loss of heterozygosity for chromosome 18q and microsatellite instability are highly consistent across the region of the DCC and SMAD4 genes in colorectal carcinomas and adenomas. J Appl Res2008;8:14–23.
Chang SC, Lin JK, Lin TC, Liang WY. Loss of heterozygosity: An independent prognostic factor of colorectal cancer. World JGastroenterol2005;11:778-84. DOI: https://doi.org/10.3748/wjg.v11.i6.778
Iacopetta B, Grieu F, Amanuel B. Microsatellite instability in colorectal cancer. Asia Pac J ClinOncol 2010;6:260-9. DOI: https://doi.org/10.1111/j.1743-7563.2010.01335.x
Woerner SM, Kloor M, von KnebelDoeberitz M, Gebert JF. Microsatellite instability in the development of DNA mismatch repair deficient tumors. Cancer Biomark 2006;2:69–86. DOI: https://doi.org/10.3233/CBM-2006-21-208
Strimpakos A, Syrigos K, Saif M. Pharmacogenetics and biomarkers in colorectal cancer. Pharmacogenomics J 2009;9:147–60. DOI: https://doi.org/10.1038/tpj.2009.8
Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001;411:366–74. DOI: https://doi.org/10.1038/35077232
Thibodeau SN, French AJ, Cunningham JM, Tester D, Burgart LJ, Roche PC, McDonnell SK, Schaid DJ, Vockley CW, Michels VV, Farr GH Jr, O'Connell MJ. Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1. Cancer Res. 1998 Apr 15;58(8):1713-8. PMID: 9563488.
Ilyas M, Straub J, Tomlinson I, Bodmer WF. Genetic pathways in colorectal and other cancers. Eur J Cancer 1999; 35:1986–2002. DOI: https://doi.org/10.1016/S0959-8049(99)00298-1
Trautmann K, Terdiman JP, French AJ, et al. Chromosomal instability in microsatellite‐unstable and stable colon cancer. Clin Cancer Res 2006;12:6379–85. DOI: https://doi.org/10.1158/1078-0432.CCR-06-1248
Lynch PM. Current approaches in familial colorectal cancer: A clinical perspective. J NatlComprCancNetw 2006;4:421–30. DOI: https://doi.org/10.6004/jnccn.2006.0034
Weinberg RA: The biology of cancer. Baltimore, MD, Garland Science, 2006. DOI: https://doi.org/10.1201/9780203852569
Iacopetta B, Li WQ, Grieu F, et al. BRAF mutation and gene methylation frequencies of colorectal tumours with microsatellite instability increase markedly with patient age. Gut 2006;55:1213–4. DOI: https://doi.org/10.1136/gut.2006.095455

How to Cite

Orugbo, V. P., & Akpo, E. E. (2021). Metabolic changes in colorectal carcinomas are key factors for the early detection of neoplastic change. Annals of Clinical and Biomedical Research, 2(2). https://doi.org/10.4081/acbr.2021.134